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Behaviour of selenophenes substituted with
electron-withdrawing groups in polar Diels–Alder reactions
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Abstract—The normal electron-demand Diels–Alder reactions between substituted selenophenes, nitro being one of these groups,
and dienes of diverse reactivity give benzoselenophenes derivatives.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Selenium is an essential micronutrient for animals and
humans. In recent years, organoselenium chemistry
has emerged as an exceptional class of structures, due
to its pivotal role in the synthesis of a large number of
biological compounds and important therapeutic prod-
ucts ranging from antiviral and anticancer agents to nat-
urally occurring food supplements. Over the last decade,
considerable efforts have been directed towards the
development of stable organoselenium compounds that
could be used as antioxidants, enzyme inhibitors, anti-
tumour and anti-infective agents, cytokine inducers
and immunomodulators. In addition, many organosele-
nium compounds have been studied as biological models
capable of simulating catalytic functions demonstrated
by natural enzymes.1

The design and synthesis of organoselenium compounds
with biological activity currently constitute fundamental
problems in applied chemistry in both pharmaceutical
and academic laboratories. Therefore, every effort to
increase the knowledge of selenium chemistry would
contribute to those purposes.

As a follow-up of our research on the behaviour of
five-membered aromatic heterocycles in cycloaddition
reactions, and considering that compounds such as benzo-
furans, benzothiophenes and benzopyrroles have been
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synthetized by Diels–Alder (DA) reactions,2 it is of
interest to investigate the cycloaddition reactions of
substituted selenophene with electron-withdrawing
groups in the presence of strong and poor dienes.

In this Letter, our aim has been to explore and to com-
pare the behaviour of nitroselenophenes in their expo-
sure to dienes under thermal conditions. Moreover we
report a new and simple route for the construction of
benzoselenophenes.
2. Results and discussion

The experiments were carried out using the following
compounds as dienophile: 2-nitroselenophene (1a), 3-
nitroselenophene (1b),3 2-acetyl-5-nitroselenophene (1c)
and 2-acetyl-4-nitroselenophene (1d).4 Isoprene (2) and
1-diethyl-amino-3-tert-butyldimethyl-siloxy-1,3-butadi-
ene (Rawal’s diene) (3) were chosen as the diene compo-
nents (Scheme 1).

The results of cycloaddition studies between nitroseleno-
phenes with the above mentioned dienes under different
reaction conditions,5 shows their behaviour as normal
dienophiles.

The reactions of 1a with isoprene proceeded to produce
the mixture of isomeric cycloadducts 4a and 4b. The
ease of thermal extrusion of nitrous acid accompanying
the DA reaction of nitroselenophenes and of the dehy-
drogenation of the resultant dihydrobenzoselenophenes
makes this reaction sequence a simple way to produce
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Table 1. Diels–Alder reactions of nitroselenophenes and isoprene

Entry Dienophile Conditionsa Products Product
ratio

Yieldb

(%)

1 1a 200 �C, 72 h 4a,b 1.5:1 60
2 150 �C, 72 h 4a,b 1.5:1 55
3 1b 200 �C, 72 h 4a,b 1:1 58
4 150 �C, 72 h 4a,b 1:1 54
5 1c 200 �C, 72 h 6a,b 1:1 55
6 150 �C, 72 h 6a,b 1:1 50
7 1d 200 �C, 72 h 6a,b 1.5:1 59
8 150 �C, 72 h 6a,b 1.5:1 54

a 12 equiv of isoprene in benzene.
b Based on consumed dienophile.
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benzoselenophenes. In these conditions the step of the
dehydrogenation would be a thermal process via radical
intermediates.6

Similarly, the treatment of 1b with 2 afforded a mixture
of 4a and 4b with moderate yields (Scheme 2, Table 1,
entries 1–4).8

The DA reactive behaviour of nitroselenophenes ap-
pears as opposed to that reported for nitrothiophenes
when isoprene was used as diene. 2b No pyrrolyl-deriva-
tives from hetero DA were detected.

On the other hand, exposure of disubstituted selenoph-
ene 1c to isoprene yielded the mixture of isomeric benzo-
selenophenes 6a and 6b with moderate yields (Scheme
3). In a similar way, reactions of 1d with 2 cycloadducts
6a and 6b were obtained (Table 1, entries 5–8).8 These
reactions proceeded by the selective addition of the
diene to the nitro-substituted double bond of the seleno-
phene. No bis-adduct from the double cycloaddition of
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Scheme 2. Reactivity of nitroselenophenes with different dienes.
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Scheme 3. Reactivity of 2-acetyl-nitroselenophenes with different dienes.
the diene was detected. Attempts to isolate the primary
adducts were not successful because of their instability.

When 1-diethyl-amino-3-tert-butyldimethyl-siloxy-1,3-
butadiene (Rawal’s diene) reacted with 1a it afforded
aromatic cycloadduct 5a with loss of the nitro group.
Similarly, in the reactions of 3 with 1b benzoseleno-
phene, 5b was obtained with moderate to high yield
and complete regioselectivity (Scheme 2, Table 2).8

Exposure of 1c and 1d to 3 gave benzoselenophenes 7a
and 7b, respectively.8 The reactions proceeded for dieno-
philes 1c and 1d by addition of the diene selectively to
the nitro-substituted double bond of the selenophene,
indicating the strong directing effect of the nitro group.
In these reactions, only 1:1 adducts whose structure re-
vealed site selectivity and regioselectivity were obtained.
All cycloaddition products shows extrusion of the nitro
group as nitrous acid.

By analogy,7 the reactions of nitroselenophenes with
dienes 2 and 3 could be considered a domino process
that is initialized by a polar DA reaction; the latter con-
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Table 2. Diels–Alder reactions of nitroselenophenes with Rawal’s
diene

Entry Dienophile Conditionsa Product Yieldb (%)

1 1a 200 �C, 72 h 5a 52
2 150 �C, 72 h 5b 50
3 1b 200 �C, 72 h 5a 55
4 150 �C, 72 h 5b 50
5 1c 200 �C, 72 h 7a 56
6 150 �C, 72 h 7b 50
7 1d 200 �C, 72 h 7a 53
8 150 �C, 72 h 7b 53

a 3 equiv of Rawal’s diene in benzene.
b Based on consumed dienophile.
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certed elimination of nitrous acid from the [2+4] cyclo-
adduct yields the corresponding benzoselenophenes.
The irreversible character of the extrusion of nitrous
acid makes the domino reaction thermodynamically
feasible.
3. Conclusions

We have described the first synthesis of benzoseleno-
phene by D–A reactions. This study indicates a properly
substituted selenophene function as a normal dieno-
phile. A very strong electron-acceptor group, such as a
nitro group, induces similar reactivity at 2- and 3-posi-
tions in the selenophene ring.

The results are consistent with previously published
reactions of nitrofurans and nitropyrroles with different
dienes, that proceed to yield benzofurans and indoles as
the main products.2a,c

Finally, these reactions provide a clean one-pot synthe-
sis of benzoselenophenes from readily available nitro-
selenophenes with diverse dienes.
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